Valuable materials of all kinds - produced automatically in living cells

In future, algae could be used to produce practically everything that still requires petroleum, including plastics, fuels, medicines and food. Algae are also climate savers par excellence, because they bind ten times more CO2 than terrestrial plants. Festo, a company based in Esslingen, Germany, has developed a high-tech bioreactor that can be used to automatically cultivate the small green biofactories - and that do so a hundred times more efficiently than terrestrial plants.

We have long known that nature can serve as a model to find solutions for technical challenges in many areas. And "bionics" is no longer just an empty portmanteau word derived from biology and technology that involves interesting thought experiments; it is now being put to practical use. Whether it's truss constructions, self-cleaning surfaces with a lotus effect or the aerodynamics of aircrafts and vehicles - there are already a number of concrete examples that are suitable for everyday use.

The Festo Group in Esslingen - an international specialist in control and automation technology - recognised the importance of natural models years ago. In 2006, Festo founded the Bionic Learning Network, an international research association of universities, institutes and developers, which set itself the task of looking for natural phenomena that can be transferred to everyday in the manufacturing sector. Artificial kangaroos, ants, spiders, elephant trunks, fish fins and chameleon tongues are some of the objects that have already been created.

Metabolic pathways to be optimised with synthetic biology

In any case, the response to the novel bioreactor has been fantastic: "The Bionic Learning Network traditionally presents our latest projects at the Hannover Messe every year," says Gaißert. "So this year, we presented the PhotoBionicCell, and people were extremely enthusiastic. This of course encourages us to continue working on it and making it even more efficient."

This will involve technical adjustments as well as the use of synthetic biology: Festo is working with the Max Planck Institute for Terrestrial Microbiology in Marburg on the artificial improvement of photosynthesis. Thousands of computer-designed enzyme variants can then be tested using Festo’s automated dispenser, packed into synthetically produced, CO2-fixing artificial cells, so-called droplets, and subsequently be cultivated in the bioreactor. The system has the potential to be transferred to other industrial bioreactors or cells, so that chemical processes can increasingly be replaced by biological ones in the future.

Editor’s note:

From a scientific point of view, many green photosynthesising microorganisms, such as the algae Synechocystis or spirulina mentioned in the article, are part of the cyanobacteria rather than the algae family. Unlike algae, cyanobacteria are prokaryotes and do not have a cell nucleus. However, as they have the ability to photosynthesise, cyanobacteria used to be taxonomically counted as algae and were also called blue-green algae. In common usage and public understanding, however, this aforementioned distinction is not usually made, which is why such species are also often referred as microalgae.

Further information

Article:
10-Nov-2022
Dr. Petra Neis-Beeckmann
© BIOPRO Baden-Württemberg GmbH

 

Further information:
Festo SE & Co. KG
Ruiter Str. 82
73734 Esslingen
E-Mail: presse(at)festo.com

www.festo.com/en

www.festo/bionic-learning

Source:
https://www.biooekonomie-bw.de/en/articles/news/valuable-materials-all-kinds-produced-automatically-living-cells