Insilico announces the release of the “Insilico designer” for digital-twin-based design of experiments optimized for machine learning applications
Bioprocess Digital Twins
/ Copyrights: Insilico Biotechnology AG, 2020(Stuttgart) - Insilico Biotechnology AG has announced the release of a new product, the Insilico Designer for Digital-Twin-based Design of Experiments (DoE). The Insilico Designer is used to develop an experimental design for bioreactor runs that reduces the experimental burden while resulting in information-rich data that is optimized for machine learning applications.
As machine learning is being adopted widely in bioprocess development, the quality of data obtained from training experiments becomes critical for achieving high predictivity of machine-learning applications. While traditional methods such as statistical DoE rely on prior knowledge for designing factorial experiments, the Insilico Designer is able to identify the combinations of factors and their levels that lead to the richest information in the data. The Insilico Designer uses a virtual bioprocess model, the Insilico Digital Twin, to design the minimum number of experiments required to achieve a desired predictive accuracy. As part of the Insilico Technology Platform, the Insilico Designer minimizes the experimental burden while ensuring that quality predictions are achieved from machine learning applications.
Klaus Mauch, the CEO of Insilico, says: "We realized very early on, that to achieve good quality predictions from machine learning applications such as the Insilico Trainer for training Digital Twins, it is imperative to use good quality data. However, the type of data usually generated from conventional Design of Experiments is only suitable for statistical or manual interpretations. In order to capture the higher-order interactions between design factors for training machine learning models, we need to use a model itself to design those experiments. Thus, the Designer was developed to design a minimum number of experiments that will achieve the required predictive accuracy from machine learning applications".
About Insilico
Insilico Biotechnology AG develops and delivers predictive Digital Twins to advance biopharmaceutical process development and manufacturing. Insilico Digital Twins of cell culture processes lead to superior productivity, product quality and process robustness. Ground breaking predictive power is achieved by exploiting process data using artificial intelligence and biochemical networks. As a result, Insilico’s unique approach substantially reduces experimental effort, costs of goods and time to market. Leading biopharmaceutical companies worldwide use Insilico Digital Twins for cell line development, media design and process control. Founded in 2001, Insilico Biotechnology is a privately held company based in Stuttgart, Germany.
Further information
Contact:
Caroline Shafik
Public Relations Manager
Insilico Biotechnology AG
press@insilico-biotechnology.com
https://www.insilico-biotechnology.com/news/insilico-announces-the-release-of-the-insilico-designer-for-digital-twin-based-design-of-experiments-optimized-for-machine-learning-applications